Malaysian Journal of Analytical Sciences (MJAS)

Published by Malaysian Analytical Sciences Society

STUDY OF SOLVOTHERMAL SYNTHESIS OF MAGNESIUM-BASED METAL-ORGANIC FRAMEWORKS

(Kajian Sintesis Solvoterma Kerangka Logam-Organik Berasaskan Magnesium)

Umar Abd Aziz,¹ Mohamed Ibrahim Mohamed Tahir,^{1,2} Nurul Farhana Ahmad Aljafree,^{1,2}, and Mohd Basyaruddin Abdul Rahman,^{1,2*}

¹Foundry of Reticular Materials for Sustainability, Institute of Nanoscience and Nanotechnology, ²Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

*Corresponding author: basya@upm.edu.my

Received: 18 April 2023; Accepted: 6 June 2023; Published: 23 June 2023

Abstract

Metal-organic frameworks (MOFs) are a class of reticular materials consisting of metal ions coordinated to organic ligands. Theoretically, magnesium metal of the s-block has low electronegativity due to their large ionic radii and low ionic charges. The coordination number of magnesium immensely varies depending on the electrostatic interactions with the ligands. Therefore, designing strategic synthesis of Mg-based MOFs becomes a challenge hence its scarcity in literature. This study aims to investigate the different procedure of synthesizing Mg-MOFs using both flexible and rigid organic linkers in organic solvents at high temperature; termed solvothermal method. Magnesium nitrate hexahydrate (Mg(NO₃)₂.6H₂O) are used as the metal source and mixed with naturally occurring plant acids as the organic linkers; malic acid and tartaric acid. Rigidity was introduced by addition of aromatic organic ligands of benzene-1,4-dicarboxylic acid (BDC) and benzene-1,3,5-tricarboxylic acid (BTC). By varying precursor ratios and organic solvents, we hope to improve the reaction condition for the previously reported synthesis of Mg-MOFs. Single crystal X-ray diffraction (SCXRD) and powder X-ray diffraction (PXRD) analysis showed that the same quality crystals and high crystallinity powder have been produced under improved reaction conditions. The coordination of s-block metal ions has also been found to be most suited in a solvent mixture of H₂O and *N*,*N*-dimethylformamide (DMF).

Keywords: metal-organic framework, nanomaterial, solvothermal synthesis, s-block, green chemistry

Abstrak

Kerangka logam-organik (MOFs) adalah satu kelas bahan retikulasi yang terbentuk dari ion logam dikoordinasikan ke ligan organik. Secara teori, logam blok-s magnesium mempunyai nilai keelektronegatifan yang rendah kerana radius ion yang besar dan cas ion yang rendah. Nombor koordinatan antara logam magnesium berbeza-beza bergantung kepada interaksi elektrostatik dengan ligan yang berkaitan. Justeru, perancangan sintesis MOF berasaskan magnesium secara strategik adalah satu cabaran berikutan kekurangan perbincangan mengenainya dalam tinjauan literatur. Kajian ini bertujuan untuk meneliti pelbagai prosedur sintesis Mg-MOF menggunakan penghubung organik samada fleksibel mahupun tegar pada suhu yang tinggi; iaitu kaedah solvoterma. Magnesium nitrat heksahidrat (Mg(NO₃)₂.6H₂O) digunakan sebagai sumber logam dan dicampurkan dengan asid tumbuhtumbuhan sebagai ligan organik semula jadi; asid malik dan asid tartarik. Ketegaran dalam kerangka dimasukkan melalui penambahan ligan aromatik organik iaitu asid benzena-1,4-dikarboksilik (BDC) dan asid benzena-1,3,5-trikarboksilik (BTC). Dengan mempelbagaikan nisbah pendahulu dan pelarut organik, kami berharap dapat menambah baik keadaan tindak balas yang

telah dilaporkan bagi sintesis Mg-MOF. Analisa pembelauan hablur tunggal sinar-X (SCXRD) dan pembelauan serbuk sinar-X (PXRD) menunjukkan bahawa hablur yang sama kualiti dan serbuk dengan kehabluran yang tinggi telah berjaya disintesis dengan penambahbaikan terhadap keadaan tindak balas. Campuran pelarut H₂O dan *N,N*-dimetilformamida (DMF) pula merupakan keadaan yang paling sesuai untuk pengkoordinatan logam blok-s.

Kata kunci: kerangka logam-organik, bahan nano, sintesis solvotermal, blok-s, kimia hijau

Introduction

Metal-organic frameworks (MOFs) are reticular materials composed of metal ions linked by organic ligands with specific functional groups such as carboxylate that can coordinate to the metal nodes [1]. The most dominant choices for the metals are from the p- and d-block elements due to the pronounced characteristics of transition metals such as visible light absorption, multiple oxidation states and predictable coordination geometries. On the other hand, MOFs based on s-block elements are relatively less studied. One of the main factors for the lack of interest is the unpredictable MOF structure due to having little control over the metals' coordinative behaviour. Large difference in electronegativity between s-block metal and carboxylate oxygen atom leads to a mainly ionic interaction. Thus, the coordinative nature of the metal centre throughout the network is instead determined primarily by the orientation of the functional groups, directly influenced by steric considerations [2]. Despite the setbacks, s-block MOFs can provide distinctive and intriguing properties inherited from their respective sblock elements; inexpensive and non-toxic [3]. The unpredictable coordination behaviour of the ionic metal nodes may result in interesting characteristics such as low density, flexible networks and water-soluble MOFs [4]. Therefore, s-block MOFs have the potential of a wide range of applications. Biocompatible MOFs can be designed from s-block metals such as Na⁺, K⁺, Mg²⁺ and Ca²⁺ which are already involved naturally in biological

processes. Apart from amino acids which have been extensively studied as linkers, plant acids on the other hand have been largely under the radar and investigating their potential in biocompatible MOFs synthesis will be significant.

It is useful to study the previously reported synthesis as part of the ongoing effort to improve the methodologies of synthesizing s-block metal MOFs. While s-block metals generally have the same behaviour, ions with different properties will contribute to variations in reactivity. Mg2+ provides more control to the connections of metal-linker to form the framework. A larger Ca²⁺ ion compared with Mg²⁺ resulted in higher coordination number [2]. Furthermore, since s-block metals ions are hard metals, they preferably form ionic bonds with hard-heteroatom based organic ligands. Carboxylates consequently are the most used linkers. Some reports of using soft bases require modification of the heteroatom onto the organic linkers such as N-based carboxylates to yield a stable structure [5]. For the reaction condition, solvothermal synthesis has been the most widely used method with few variations on the parameters. For example, group 1 metals are best dissolved in polar solvents like ether due to the ability to coordinate to the metals [3]. Therefore, the main objective of this study is to identify the ideal method that has been used to synthesize Mg-based MOFs and make improvements on them.

Figure 1. The organic linkers used in this study (A) L-(-)-malic acid and (B) L-(+)-tartaric acid

The solvothermal synthesis of Mg-MOF in this study are done with different combination of solvents to achieve condition than the previously reported methods. We utilize aliphatic linkers from naturally occurring plant acids for possible biocompatible applications. Previously it has been reported the pesticide encapsulation by two porous calcium L-lactate MOFs [6]. However, successful synthesis of MOFs with such properties are rare since the framework of s-block metals tend to be flexible and nonporous [2]. Therefore, we also incorporate rigid aromatic linkers that have shown the ability to form porous and more stable MOFs. Herein the s-block metal used is Mg²⁺ ion. The aliphatic linkers used are plant acids of malic acid and tartaric acid while the aromatic dicarboxylic acids are benzene-1,4-dicarboxylic acid (BDC) and benzene-1,3,5tricarboxylic acid (BTC).

In this study, we hope to study the pattern in which s-block MOFs are synthesized and improve the established methods that has been used to synthesize Mg-MOFs. The effect of varying the synthesis parameters; solvents, temperature and time are studied. Improvements in term of less use of organic solvents, milder reaction conditions and shorter reaction time are preferred. The resulting compounds were then characterized by powder X-ray diffraction (PXRD) and, when possible, single crystal X-ray diffraction (SCXRD) [1]. Based on the findings, we outline few suggestions in approaching the synthesis of s-block MOFs using various biocompatible linkers.

Materials and Methods

Materials

All reagents and solvents were commercially purchased and used without further purification.

Synthesis of MOFs

All of the reagents were mixed in 6 ml solvents at molar ratio outlined in Table 1 & 2. A molar ratio of 1 equates to 0.4 mmol. The solvents used are *N*,*N*-

dimethylformamide (DMF), deionized water (H₂O), ethanol (EtOH), dimethylacetamide (DMA) and tetrahydrofuran (THF). Unless stated, the ratio of solvents used in a mixed system are of equal parts except for triethylamine (TEA) where only 2 drops are added into the glass vial. The solutions were made to reach homogeneity by sonication, before being put into the oven at 120°C until the product is formed. The metal source used are magnesium nitrate hexahydrate (Mg(NO₃)₂.6H₂O). The organic ligands used as plant acids used are L-(-)-malic acid (CH₂CHOH)(CO₂H)₂ and L-(+)-tartaric acid (Tar), (CHOH)₂(CO₂H)₂. The aromatic linkers are H₂BDC (benzene-1,4-dicarboxylic acid) and H₃BTC (benzene-1,3,5-tricarboxylic acid).

Characterization

Single crystal X-ray diffraction (SCXRD) are collected by a Gemini E Oxford Diffraction diffractometer with monochromatized Cu K α radiation. Powder X-ray diffraction (PXRD) data are recorded at ambient temperature on a Shimadzu-600 diffractometer with Cu K α radiation ($\lambda = 15406 \mbox{\sc A}, 30 \mbox{\sc NV}, and 40 mA) with a scan speed of <math display="inline">2^{\circ}$ min $^{-1}$ and a step size of 0.02° in 2θ . The simulated PXRD patterns and unit cells database are obtained from the Cambridge Crystallographic Data Centre (CCDC). Both methods are used to identify the resulting solids by comparing the unit cells of the crystals with existing data and the X-ray diffraction patterns of the powders with existing spectra of their respective reagents.

Results and Discussion

The reaction conditions are chosen from methods that have been previously used to successfully synthesize MOFs across the periodic table. Polar solvents such as DMF and EtOH are some of the common solvents [7] while addition of H₂O into the mixture has been proven to yield Mg-based MOFs [2]. Where possible, SCXRD has been used to identify the resulting crystals while PXRD was used for the obtained powder.

Table 1. Parameters used for Mg-MOF reactions varying the solvent ratio

	Precursors	Molar Ratio	Sample	S	olvent Ra	Ob		
Metal	Linker	of M:L	Code	H ₂ O	DMF	EtOH	Observation	
Mg^{2+}	L1: Tartaric acid L2: BDC	2:1:1	1	1	-	-	No solid	
			2	-	1	-	No solid	
			3	-	-	1	No solid	
			4	1	1	-	Crystal	
			5	1	-	1	No solid	
	L1: Tartaric acid L2: BTC	1:3:2	6	1	-	-	No solid	
			7	-	1	-	No solid	
			8	-	-	1	No solid	
			9	1	1	-	Crystal	
			10	1	-	1	No solid	
			11	-	1	1	No solid	
			12	1	1	1	No solid	

Table 2. Parameters used for Mg-MOF reactions varying the molar ratio of precursors

Sample Code	Solvent		Ob				
Sample Code		Mg ²⁺	BDC	BTC	Tar	Mal	Observation
13	DMF:H ₂ O	2	1	-	2	-	No solid
14	DMF:H ₂ O	3	-	1	2	-	No solid
15	DMF:H ₂ O	2	1	-	-	2	No solid
16	DMF:H ₂ O	3	-	1	-	2	No solid
17	DMA	2	-	-	8	-	No solid
18	DMA	2	1	-	-	-	No solid
19	DMA	2	-	1	-	-	No solid
20	EtOH	2	-	-	8	-	No solid
21	EtOH	2	1	-	-	-	Powder
22	EtOH	2	-	1	-	-	Powder
23	DMF:H ₂ O:TEA	2	1	-	8	-	No solid
24	DMF:H ₂ O:THF	2	1	-	8	-	Crystal
25	DMF:H ₂ O:THF:TEA	2	1	-	8	-	No solid

Mg-MOF crystals

The method used for crystal 4 yields Mg(Tar)(H₂O), a rectangular MOF crystal (Figure 2A) with refcode CELJOU (Table 3). The MOF was previously synthesized by a better method in terms of solvent and reaction condition. As opposed to solventermal synthesis with DMF:H₂O solvent at 120°C (Table 1), the original method uses only water as the medium with warming in silicone oil bath at 60°C for 5 min before being left to sit for 16 hrs. While the original method is

the preferred green synthesis route, the method for crystal 4 establishes that the solvothermal synthesis with DMF as its base can act as a universal template capable to synthesize a myriad of MOF crystals. This is also observed by others whereby the decomposition of DMF to its respective formic acid and dimethylamine (base) provides the desired linker deprotonation rate capable of slowly forming high quality crystals of a lot of MOFs [7].

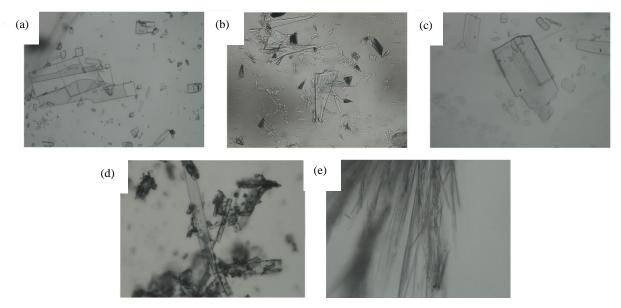


Figure 2. Microscopic view at ×20 magnification for crystals of (a) **4**; (b) **9**; (c) **24**; ×40 magnification for microcrystalline powder of (d) **21**; (e) **22**

The method used for crystal **24** synthesized Mg(Tar)(H₂O) MOF with refcode JIFXIG (Table 3) having similar morphology (Figure 2B) to crystal **4**. The original reported method uses PTFE lined autoclave at 100°C while the crystal **24** can be obtained in a normal glass vial at 120°C (Table 2). This allows for bulk synthesis to be possible since pressure resistance

autoclave synthesis can only be done in small batches. Similar to the method used for crystal **4**, the use of DMF increases the control on the reaction. The deprotonation rate is highly tuneable by controlling the amount of formic acid or dimethylamine by adding them manually before the solvothermal reaction begins.

Table 3. Unit cell parameters of Mg-MOF crystals

Crysta l	CCDC Refcode	Space Group	a / Å	<i>b</i> / Å	c / Å	α/°	β /°	γ/°	V / Å ³
4	CELJOU [8]	$P2_12_12_1$	7.904	11.119	18.213	90.0	90.0	90.0	1601
9	JIFXIG [9]	$P2_12_12_1$	7.878	11.100	18.157	90.0	90.0	90.0	1587
24	DOHDOU [10]	$R\overline{3c}$	8.148	8.148	22.788	90.0	90.0	120.0	1310

The method used for crystal **9** produces plate-like Mg(OOCH)₂(HOOCH) MOF crystal (Figure 2C) with refcode DOHDOU (Table 3). The solvent used for crystal **9** is an equal mixture of DMF:H₂O (Table 1), while the reported previous method is DMF:EtOH:H₂O with ratio 10:0.5:0.5. This means the amount of DMF has been reduced significantly. Moreover, the previous method requires an addition of 0.1 ml of formic acid. The successful synthesis of crystal **9** shows that enough formic acid can be obtained from the disintegration of

DMF at high temperature. In addition, the temperature and reaction vessel needed is also not as demanding. While the previous method is carried out in a Teflon lined autoclave at a temperature of 140° C, crystal **9** can be synthesised in a glass vial at 120° C. It is important to note that for the original method, substituting the metal precursor for other metal salts such as $Mg(ClO_4) \cdot 6H_2O$ gives the same result. Thus, it can be inferred that the same observation is true for crystal **9**.

Mg-MOF powder

There are two powder MOFs identified by their PXRD in comparison with the simulated pattern from the database. Powder **21** (Figure 2D) is the Mg₃(BDC)₃(EtOH)₂ MOF (Figure 3) with refcode KIFKAM [11] incorporating the BDC linker and the solvent EtOH in the framework. The reaction condition of this MOF is the same as the original reported method, except for the solvent. The use of fully EtOH instead of

EtOH: H_2O mixture may be the reason for the formation of powder 21. It has been understood that water is ineffective in synthesizing some MOFs [12], making it a suitable modulator in MOF synthesis. Thus, modulated-solvent mixture is ideal in controlling the crystallization rate [13], resulting in the preferred crystal size compared to the fast, uncontrolled synthesis of the powder. On the other hand, lowering the temperature or reducing the reaction time does not produce any crystals.

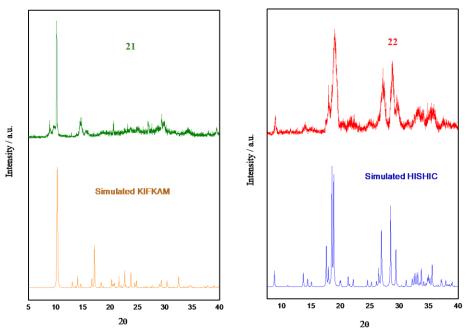


Figure 3. PXRD spectrum of powder 21 and 22 showing high crystallinity of the products. The characteristic peaks of the powder 21 and 22 match with the simulated peaks of an Mg-MOF with refcode KIFKAM and HISHAC respectively

Powder **22** (Figure 2E) is a MOF (Figure 3) with composition Mg₃(BTC)₂(H₂O)₁₂ with the refcode HISHIC [14]. The BTC linker and H₂O solvent are incorporated into the framework. Like powder **21**, the original method used the solvent mixture EtOH:H₂O to synthesize the crystals (Table 2). Using only the EtOH produces powder. However, the reaction condition in this case utilises a much lower temperature of 120°C compared to the original optimum temperature of 150°C for the same period of 24 hours. The lowering of the optimum temperature can be used in the bulk synthesis of powder MOF for uses in various applications, where good quality crystals are not necessarily required. For example, the encapsulation of pesticide *cis*-1,3-

dichloropropene into a Ca-based MOF-1201 that has been done in its powder form [6].

Conclusion

In this study, we have explored different approaches in solvothermal synthesis of Mg-MOFs. Characterization from SCXRD and PXRD have been used to identify the synthesized compounds. Improvements have been made to certain aspects of the reaction. Lower temperature, shorter time and less use of organic solvents have been utilised. A solvent system of $H_2O:DMF$ shows to be effective in promoting coordination of Mg^{2+} metal ions to the linkers. However, no MOF consisting of both the plant acids and rigid

linkers simultaneously were obtained. Understanding the required parameters and conditions for mixed-linker synthesis are crucial. Further studies can be done to investigate the mechanisms of incorporating mixedlinker into s-block frameworks.

Acknowledgement

The authors gratefully acknowledge the Putra Grant (UPM/700-2/1/GP-IPB/2017/9581000) from Universiti Putra Malaysia (UPM).

References

- 1. Yaghi, O. M. (2016). Reticular chemistry construction, properties, and precision reactions of frameworks. *Journal of the American Chemical Society*, 138(48): 15507-15509.
- Banerjee, D., Finkelstein, J., Smirnov, A., Forster, P. M., Borkowski, L. A., Teat, S. J., and Parise, J. B. (2011). Synthesis and structural characterization of magnesium based coordination networks in different solvents. *Crystal Growth & Design*, 11(6): 2572-2579.
- 3. Fromm, K. M. (2008). Coordination polymer networks with s-block metal ions. *Coordination Chemistry Reviews*, 252: 856-885.
- 4. Griffin, S. L. and Champness, N. R. (2020). A periodic table of metal-organic frameworks. *Coordination Chemistry Reviews*, 414: 213295.
- Alnaqbi, M. A., Alzamly, A., Ahmad, S. H., Bakiro, M., Kagere, J. and Nguyen, H. L. (2021). Chemistry and applications of s-block metal-organic frameworks. *Journal of Materials Chemistry A*, 9(7): 3828-3854.
- Yang, J., Trickett, C. A., Alahmadi, S. B., Alshammari, A. S. and Yaghi, O. M. (2017). Calcium L-lactate frameworks as naturally degradable carriers for pesticides. *Journal of the American Chemical Society*, 139 (24): 8118-8121.

- 7. Rowsell J. L. C. and Yaghi, O. M. (2004). Metalorganic frameworks: A new class of porous materials. *Microporous and Mesoporous Materials*, 73(1-2): 3-14.
- Rood, J. A., Noll, B. C. and Henderson K. W. (2010). Homochiral frameworks derived from magnesium, zinc and copper salts of L-tartaric acid. *Journal of Solid State Chemistry*, 183(1): 270-276.
- Kam, K. C., Young, K. L. M. and Cheetham, A. K. (2007). Chemical and structural diversity in chiral magnesium tartrates and their racemic and meso analogues. *Crystal Growth & Design*, 7(8): 1522-1532.
- Rossin, A., Ienco, A, Costantino, F., Montini, T., Di Crediro, B., Caporali, M., Gonsalvi, L., Fornasiero, P. and Peruzzini, M. (2008). Phase transitions and CO₂ adsorption properties of polymeric magnesium formate. *Crystal Growth & Design*, 8(9): 3302-3308.
- Davies, R. P., Less, R. J., Lickiss, P. D. and White, A. J. P. (2007). Framework materials assembled from magnesium carboxylate building units. *Dalton Transactions*, 24: 2528-2535.
- 12. Tezerjani, A. A., Halladj, R. and Askari, S. (2021). Different view of solvent effect on the synthesis methods of zeolitic imidazolate framework-8 to tuning the crystal structure and properties. *RSC Advances*, 11(32): 19914-19923.
- 13. Forgan, R. S. (2020). Modulated self-assembly of metal-organic frameworks. *Chemical Science*, 11(18): 4546-4562.
- 14. Mazaj, M., Čelič, T. B., Mali, G., Rangus, M., Kaučič, V. and Logar, N. Z. (2013). Control of the crystallization process and structure dimensionality of Mg-benzene-1,3,5-tricarboxylates by tuning solvent composition. *Crystal Growth & Design*, 13(8): 3825-3834.